Subtotal Hysterectomy with Single Port Access Laparoscopy: Gadget or Progress?

Carole Abo, Horace Roman

1Department of Gynecology and Obstetrics, Rouen University Hospital, Rouen, France
2Research Group 4308 « Spermatogenesis and Gamete Quality», Institute for Research and Innovation in Biomedicine, Normandie Université, Rouen, France; IFRMP23, Reproductive Biology Laboratory, Rouen University Hospital, Rouen, France

Abstract

Background: The strengths of surgical laparoscopy compared to laparotomy include shorter hospitalization, reduction in post-operative pain and adhesions, and better cosmetic outcomes. Since 2008, Single Port Access Laparoscopy (SPAL) has been used in order to offer additional cosmetic benefits and to further reduce post-operative morbidity. The aim of this study was to assess the feasibility of a subtotal hysterectomy using SPAL technique, as well as the benefits and the limitations of this technique.

Methods: Retrospective series of 15 women managed between September 2010 and February 2013 at our university tertiary referral center by subtotal hysterectomy using SPAL technique for benign pathologies.

Results: Twelve of the 15 procedures were performed by SPAL alone. Three conversions to classic laparoscopy were required for a large uterus (1 case) or major pelvic adhesions (2 cases). Postoperative complications were a bladder injury, a subumbilical hematoma and transcervical fragmentation of a uterus with a low-grade sarcoma. Mean operative time was 85.4 minutes (50-170). Postoperative hospitalization was of 2 days in average. The rate of patient satisfaction at 16-month follow-up was 9.2 / 10.

Corresponding author: Horace Roman, MD PhD
Department of Gynecology and Obstetrics
Rouen University Hospital, Rouen, France
Hôpital Charles Nicolle, 1 rue de Germont
76031 Rouen, France
E-mail: horace.roman@gmail.com
Introduction

For many years, surgeons and patients have agreed on the advantages of laparoscopy compared to laparotomy, for several gynecologic surgical indications. Indeed, the strengths of surgical laparoscopy include shorter hospitalization, reduction in post-operative pain, decrease in post-operative adhesions, and better cosmetic outcomes.

Since 2008, Single Port Access Laparoscopy (SPAL) has been used for different indications, in order to offer additional cosmetic benefits (1), (Fig. 1) and to further reduce post-operative morbidity (2).

At the end of 2008, we introduced SPAL in our practice, and more than 50 procedures have been performed over the past 4 years: ovarian cystectomies, deep infiltrating endometriosis surgery, subtotal and total hysterectomies, appendectomies, and ablation of endometriomas using PlasmaJet. In the meantime, the introduction of the lasso with monopolar current in laparoscopy has facilitated sectioning of the uterin isthmus and as a consequence subtotal hysterectomy by laparoscopy. Thus, our SPAL indications have progressively been limited to subtotal hysterectomies, with very similar operative durations and conditions to those of standard laparoscopy.

The aim of this study was to assess the feasibility of a subtotal hysterectomy using SPAL technique, as well as the benefits and the limitations of this technique in a series of 15 patients.

Material and Methods

We retrospectively analyzed a single center series of 15 patients managed at our university tertiary referral center between September 2010 and February 2013. Patients’ age at time of intervention was between 38 and 55 years, and their BMI was between 18.4 and 36.5 (Table 1). Patients’ age at time of intervention was between 38 and 55 years, and their BMI was between 18.4 and 36.5 (Table 1). The main surgical indications were pelvic pain and menometrorrhagia. The presumed diagnoses before intervention were uterine fibroids, adenomyosis, endometriosis, pelvic adhesions and hematosalpinx. We did not routinely perform uterine biopsies prior to surgery. In all 15 cases, the suggested intervention included a subtotal hysterectomy with SPAL. All 15 patients had been informed of the advantages and drawbacks of this technique and had given their consent. All 15 interventions were performed by the same surgeon who had more than 10 months experience in SPAL technique (ovarian cystectomies, appendectomies) on beginning the series.

Conclusion: Subtotal hysterectomy using SPAL technique is safe and feasible. Successful procedure requires accurate selection of patients taking into account main limitations, such as uterus weight, patient’s BMI and abdominal surgical history. Notwithstanding, SPAL technique can be seen as technical progress.

Key words: single port access laparoscopy, subtotal hysterectomy, laparoscopy, gynecology

Surgical technique

The procedure is performed under general anesthesia by laparoscopic route with Single Port Access Laparoscopy. A transverse or longitudinal incision is made at the bottom of the umbilicus, approximately 3 cm in length. The technique is similar to that used for open laparoscopy, the only difference being the size of the incision which is twice longer. After opening the peritoneum, either the X-CONE system (KarlStorz, Tuttingen, Germany) (Fig. 2) or the laparoendoscopic single site (LESS) device (Olympus, Hamburg, Germany) is placed. In the present series, the X-CONE system and the LESS system were used in 13 and 2 procedures respectively.

The patient is placed in the Trendelenburg position in order to facilitate backflow of the digestive tract that might disturb operative procedures. This is made easier by strictly following a no residue diet during the week prior to the intervention. A uterine manipulator using a vaginal valve like the Clermont Ferrand model (KarlStorz, Tuttingen, Germany) is placed inside the uterus and handled by the second operative assistant positioned between the legs of the patient. The 5 mm diameter and 30° vision angle endoscope is introduced through the trocar orifice on the right hand side (on the side of the gynecology resident, (Fig. 2)), offering an intra-operative view of the slightly lateraled pelvis, from the left to the right of the patient (Fig. 3).

Anatraumatic grasping forceps is used to expose the organs (usually the ovaries and the fallopian tubes) and is inserted through the trocar orifice located on the left hand side of the patient (on the side of the operator, (Fig. 4)). In order to grasp the left adnexa, we prefer to use a dual curved grasper (Fig. 5A), which appears on the left hand side of the patient in the operating field. The handling of this surgical clamp by the left hand of the operator facilitates the fluidity of the operative gesture. To grasp the right adnexa, we deliberately use a monocurved grasper, which appears on the right hand side of the patient in the operating field (Fig. 5B).

The instruments used for tissue coagulation are straight...
standard laparoscopy forceps. Coagulation is achieved with a bipolar forceps, an ultrasonic scalpel or a thermofusion grasper. These straight instruments are always inserted through the central trocar orifice and handled by the right hand of the operator.

The surgical technique performed is identical to that used in classic laparoscopy. In the case of an interadnexal hysterectomy, we perform coagulation and section of the round ligaments, opening of the broad ligament, and sectioning of the utero-ovarian ligament and fallopian tubes. When bilateral adnexitomy is performed, we carry out opening of the broad ligament, followed by section of the infundibulo-pelvic ligaments. The vascular uterine pedicle is identified and coagulated at the level of the isthmus. When the uterus is larger than 300-500g, we perform coagulation of the uterine artery at its origin before dissecting it at the level of the isthmus, where access is considerably hampered by the uterine body (3).

In order to section the uterine isthmus, we use a monopolar lasso type Supraloop (Karl Storz, Tuttingen, Germany) regulated at a power of 120 W. The gesture is simple and generates a very limited quantity of smoke. After sectioning of the isthmus and ablation of the uterine body, uterine pedicle coagulation is performed easily.

Table 1. Preoperative characteristics, surgical technique and indications

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (year)</th>
<th>Weight (kg)</th>
<th>BMI (kg/m2)</th>
<th>Surgical indication</th>
<th>Preoperative diagnosis</th>
<th>Surgery performed</th>
<th>Trocar used</th>
<th>Section of isthmus (monopolar scissors, lasso monopolar, etc.)</th>
<th>Morecellation (cervix, umbilicus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>56</td>
<td>21.3</td>
<td>PP</td>
<td>UF</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>TU</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>53</td>
<td>21.5</td>
<td>PP</td>
<td>UF</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>TC</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>43</td>
<td>18.4</td>
<td>MM</td>
<td>UF</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>TC</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>65</td>
<td>22</td>
<td>PP, M</td>
<td>UF</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>TC</td>
</tr>
<tr>
<td>5</td>
<td>51</td>
<td>90</td>
<td>36.5</td>
<td>Veinous thrombosis</td>
<td>UF</td>
<td>SH</td>
<td>Less</td>
<td>ML</td>
<td>TU</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>84</td>
<td>29.1</td>
<td>PP, MM</td>
<td>UF</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>TC</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>52</td>
<td>20.8</td>
<td>PP</td>
<td>UF</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>TC</td>
</tr>
<tr>
<td>8</td>
<td>53</td>
<td>56</td>
<td>25.2</td>
<td>PP, MM</td>
<td>UF</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>TC</td>
</tr>
<tr>
<td>9</td>
<td>38</td>
<td>67</td>
<td>22.6</td>
<td>PP</td>
<td>UF</td>
<td>SH</td>
<td>Less</td>
<td>ML</td>
<td>TC</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>69</td>
<td>27.6</td>
<td>M</td>
<td>A</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>TC</td>
</tr>
<tr>
<td>11</td>
<td>54</td>
<td>64</td>
<td>25</td>
<td>MM</td>
<td>UF, A</td>
<td>SH + BA</td>
<td>X-cone</td>
<td>ML</td>
<td>TC</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>79</td>
<td>27.3</td>
<td>PP</td>
<td>UF, A</td>
<td>SH + BA</td>
<td>X-cone</td>
<td>ML</td>
<td>TC</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>70</td>
<td>26.3</td>
<td>PP, M</td>
<td>UF, A</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>TU</td>
</tr>
<tr>
<td>14</td>
<td>48</td>
<td>72</td>
<td>28.8</td>
<td>PP</td>
<td>UF</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>Suprapubic</td>
</tr>
<tr>
<td>15</td>
<td>43</td>
<td>60</td>
<td>23.7</td>
<td>PP, MM</td>
<td>A</td>
<td>SH</td>
<td>X-cone</td>
<td>ML</td>
<td>TC</td>
</tr>
</tbody>
</table>

PP: Pelvic Pain; MM: MenoMetrorrhagia; M: Metrorraghia; UF: uterine fibroids; A: Adenomyosis; SH: Subtotal Hysterectomy; SH+BA: Subtotal Hysterectomy and Bilateral Adnexectomy; ML: Monopolar Loop; TU: Transumbilical; TC: Transcervical
To perform morcellation, we use a morcellator introduced by transcervical route. The surgeon is positioned between the patient’s legs and performs morcellation with endoscopic control. This operative step may be laborious due to movement reversal, given that the endoscope continues through the umbilicus and offers a caudal view (Fig. 6). In our series, there was one case of a small uterus for which we performed morcellation by transumbilical route after ablation of the trocar, but the sheath was left in place. After retrieval of myometrium pieces dispersed in the pelvis, we performed an abdominal wash with Ringer Lactate. A 16 fr drain may be left in place in the pouch of Douglas and externalized through the cervix. It was attached to the patient’s leg by adhesive tape and removed by simple traction the day after surgery.

Patient satisfaction was assessed by telephone. The global rate of satisfaction was scored between 0 and 10 and included postoperative results, notably postoperative pain and cosmetic results.

Statistical analysis was performed using Stata 9.0 software (Stat Corporation, Lakeway Drive, TX, USA). We calculated the mean and median values as well as range for continuous variables, and percentages for qualitative variables.

Results

In our series, 12 of the 15 interventions were completely performed with SPAL technique with an average operating time of 108 minutes (Table 2). In three cases, the intervention was switched to standard laparoscopy with four trocars because of the existence of a large uterus (500g), expanded in longitudinal direction and masking the access to the origin of the uterine arteries or because of severe postoperative pelvic adhesions (2 cases). In one case, an additional suprapubic incision of 12 mm was necessary for morcellation of the uterus. No difference was observed between the X-cone system and the LESS system regarding the feasibility of the procedure.

The incision was closed in two planes: an X stitch with a slow absorption stitch on the aponeurosis of the abdominal vertical muscle and separate stitches on the skin with non absorbable stitches.

In regards to intraoperative incidents, a bladder injury occurred during incision of the uterine isthmus. The peritoneum of the vesico-uterine pouch had not been opened, as is usual practice during a subtotal hysterectomy, and a fold of the bladder dome was caught in the monopolar loop. Repair was performed by a stitch of the bladder in one plane and maintenance of the bladder catheter for 8 days.

Another intraoperative incident concerned the transcervical morcellation of a uterus with a low grade sarcoma in a 36-year-old patient with repeat fundic myoma, and a history of...
myomectomy performed by the same operator 6 years before. Upon diagnosis of sarcoma based on the fragments analyzed, a second laparoscopy enabled a trachelectomy, with a bilateral adnexectomy and multiple peritoneal biopsies. Three years after surgery, the patient had completely recovered, but was still under biannual medical supervision with annual thoracic-abdominal-pelvic CT scans.

Three immediate postoperative complications were observed. A 40 mm diameter hematoma from the preperitoneal sub-umbilical space appeared after the intervention and was responsible for the persistence of significant localized pain for 2 months. Two incisional hernias of 2 to 3 cm in diameter were observed at the site of the umbilical single port access during the postoperative visit about two months after surgery. One patient had surgical repair by open mesh repair. The second patient did not require surgical repair, because the hernia was not responsible for any complaint. One patient presented with postoperative anemia (hemoglobin level at 9.2g/dL), which was managed by administration of oral iron medication. Another patient had wound infection characterized by inflammation of the skin around the scar and a yellow fluid without abscess which was managed by local treatment. Hospitalization length averaged 3 ± 2 days. After a mean follow-up of 15±8 months, patient satisfaction rate was 9.2±1.

Discussion

In this study, we have presented 15 cases of subtotal hysterectomy by SPAL; 12 of which were completely managed by SPAL technique. The remaining three cases underwent standard laparoscopy and consequent introduction of additional trocars. In hindsight, these three cases can be explained by specific situations and constituted contraindications for SPAL. This could suggest that SPAL technique requires strict patient selection during the preoperative appointment. The success of SPAL technique is mainly based on the accurate pre-operative assessment of the patient.

SPAL technique is relatively new. It offers certain advantages such as cosmetic results (1,4,5), a supposed reduction in postoperative pain (2,6) and prevention of oblique muscle hematoma thanks to single port access.

Nevertheless, there are drawbacks to SPAL technique that probably restrict its wide spread application. SPAL clearly requires a learning curve, which increases with the complexity of the procedure (7). The instruments that are used are right-angled and insertion through one single orifice restricts their movements and requires repetitive operations of layout (8). Moreover, it is almost impossible to use more than two operative instruments (three including the endoscope), which could represent a backward step for surgeons, who are used to working with three operative instruments.

These difficulties can be bypassed with the help of the da Vinci robot (Intuitive Surgical Inc, Sunnyvale, United States) (8,9). Indeed, the robot facilitates SPAL by avoiding conflict between the instruments (10,11) used during standard laparoscopy. Inversion of laterality is corrected by equal inversion of the controls at the robot console level. It is then possible to use three instruments at the same time. This gains time and improves surgeons’ dexterity (6,10,12). In addition, the use of right-angled instruments and 3D vision enables increased preoperative ergonomy.

Existing data on SPAL support the cosmetic benefits of this technique. Indeed, SPAL is based on a single umbilical incision and existing studies clearly demonstrate the significant cosmetic advantage of SPAL compared to standard laparoscopy (1,4,5). Moreover, SPAL technique seems as safe as standard laparoscopy and does not represent any additional post-operative risks (1,13,14). Nonetheless, in our short series, the complication rate (3/15) seems high compared to subtotal hysterectomy by standard laparoscopy. We observed a particularly high rate of umbilical hernia (2/15 i.e. 13.3% versus 1% by laparoscopy) (15,16) even if a Vicryl 0 loop suture of the aponeurosis was systematically and carefully performed.

The study by Gun Yoon et al (17) reported a series of 7 patients having undergone subtotal hysterectomy for benign disease, whose characteristics were comparable to those of our patients. Mean operative time was higher than that recorded in our series: 157 min vs. 108 min. No postoperative hernia was observed, although their follow-up was only 1 month. Park et al (18) reported a series of 200 patients managed by SPAL (11 of whom underwent subtotal hysterectomy), with mean operative time averaging 180 min. They reported one recto-vaginal fistula.

Notwithstanding, the question remains as to the interest of SPAL regarding post-operative pain (19). Not all authors agree that SPAL reduces post-operative pain. The randomized trial by Fagotti et al, and the study by Chen et al showed a significantly low consumption of analgesics for patients operated with SPAL technique (6,20). However, studies by Teoh et al and Hoyer et al described similar or even increased post-operative pain after an intervention with SPAL (4,21). This could be explained by longer operating time (22,23) for SPAL with patients mainly reporting scapular pain. By improving surgeons’ training and by limiting the technical constraints of SPAL, both operating duration and post-operative pain could be lowered (24).

Our series only involved patients who had subtotal hysterectomy. We think that SPAL could be used more widely since it enables a relatively frequent and standardized intervention that cannot be done by alternative route, in our case vaginal accessibility. Our experience has progressively led us to subtotal hysterectomy, since total laparoscopic hysterectomy, accessible by SPAL (small or medium size uterus, without adhesions), remains easily accessible by vaginal route. Moreover, subtotal hysterectomy can present advantages compared to total hysterectomy, as it reduces peroperative and post-operative bleeding, and affords quicker recovery related to lack of vaginal scar (25,26).

There are also possible consequences even if they have not been proved yet regarding pelvic statics and sexuality. Hysterectomy can have an impact on pelvic floor stability, sexuality, prolapse or urinary function. In this context, subtotal hysterectomy may have some advantages. As regards sexuality, a few studies including those by Ellström et al (27) and by Kilku...
et al (28,29), have shown better preservation of sexual activity after subtotal hysterectomy; less dyspareunia. Regarding urinary function, we observed a significant reduction in urinary incontinence symptoms after subtotal hysterectomy compared to total hysterectomy (25.1% vs. 7.4%) (30,31) for comparable groups of women. Notwithstanding, additional randomized studies are necessary in order to confirm those results.

Conclusion

In our experience, subtotal hysterectomy using SPAL technique is safe and feasible since 12 of the 15 procedures were performed by SPAL alone. SPAL has gained a specific place in the armamentarium of gynecologic surgeons and may be considered as technical progress. We are convinced of the success of SPAL when preceded by rigorous patient selection.

Acknowledgments

The authors are grateful to Nikki Sabourin-Gibbs, Rouen University Hospital, for writing assistance and review of the manuscript in English.

Conflict of interest

The authors declare no conflict of interest related to the submitted work.

References


